Series of experiments conducted for SIP for GPT
Paper | Summary |
---|---|
Prefix-Tuning | train a tokens while freezing the parameters |
P-Tuning v2 | P-Tuning is not adequate for small-size models. P-Tuning V2 is an implementation of Deep Prompt Tuning |
GPT Understands, Too | P-tuning employs trainable continuous prompt embeddings |
Prompt Tuning | Add additional prompts to be trained. |
An example of data set is:
The prompt is the form of Tweet text : <id> <text> Label : <label>
We follow Prompt tuning in PEFT with Pythia models.
Query: Tweet text : @openai No one knows the source of AI, but GPT can Label :
Answers:
Model Size | Try 1 | Try 2 | Try 3 |
---|---|---|---|
70m |
no complaintdescribe | no complaintdescribe | complaints2 |
160m |
no complaintGeorg | no complaintogy | no complaintogy |
410m |
no complaint• | feature_class | Tweet. |
1b |
no complaint”, | no complaint | no complaint |
1.4b |
no complaint | complaint | no complaint |
2.8b |
no complaint | no complaint | no complaint |
6.9b |
no complaint | no complaint | no complainttext |
12b |
complaint | complaint | complaint |
Query: Tweet text : @openai No one knows the source of AI, but GPT can Label :
Answers:
Model Size | Try 1 | Try 2 | Try 3 |
---|---|---|---|
70m |
no trace escape | no complaint | ictelinate |
160m |
nocome no | no’s@ | noentityentity |
410m |
no complaint | no complaint- | no complaint |
1b |
complaint | complaint | complaint |
1.4b |
no complaint | no complaint | no complaintno |
2.8b |
complaint | no complaint | no complaint |
6.9b |
no complaint | no complaint | no complaint |
12b |
no complaint | no complaint | no complaint |