ML

Personal Study of ML

Hello

False Positive Rate

FPR is false alarm rate which is the fraction of false positives over negative samples.

\[FPR = \frac{FP}{TN + FP}\]

\(FP\) : the number of false positives, $TN$ is the number of true negatives.

  • Specificity = 1 - FPR

Example 1

For bitwise accuracy $BA(w_1, w_2)\sim B(n, 0.5)/n $, original image $I_0$, watermark $w$, and decoder $D$, FPR that the detector predicts wrongly it as AI-generated image is

Suppose $BA(D(I_0, w) = \frac{m}{n}$ for an original image $I_0$, where $n$ is the length of the watermark and $m$ is the number of matched bits between $D(I_0)$ and $w$. The key idea is that the service provider should pick the ground-truth watermark $w$ uniformly at random. Thus, $m$ is a random variable and follows a binomial distribution $B(n, 0.5)$.

\[\begin{aligned} FPR_{single} &= Pr(BA(D(I_0), w) > \tau) \\ &= Pr(m>n\tau) = \frac{n}{k= \lceil n\tau \rceil} \begin{pmatrix} n \\ k \end{pmatrix} \frac{1}{2^{n}} \end{aligned}\]

To make $FPR_{single}(\tau) < \eta$ , $\tau$ should be at least

\[\tau^* = \arg \min_\tau \sum_{k= \lceil n\tau \rceil}^n \begin{pmatrix} n \\ k \end{pmatrix} \frac{1}{2^{n}} < \eta\]

๋žœ๋คํ•˜๊ฒŒ ๋ฝ‘์•˜์„ ๋•Œ, ์ •๋‹ต watermark์—์„œ ๋žœ๋คํ•˜๊ฒŒ ๊ฑธ๋ฆฌ๋ฏ€๋กœ ์›Œํ„ฐ๋งˆํฌ ์˜ˆ์ธก ํ…Œ์ŠคํŠธ์˜ ์„ฑ๋Šฅ์€ ๊ทธ๋‹ค์ง€ ์ข‹์ง€ ์•Š๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, ๋„ˆ๋ฌด ์„ฑ๋Šฅ์ด ๋†’๊ฒŒ ๋‚˜์˜จ๋‹ค๋ฉด, False Alarm ์ด๋ผ๊ณ  ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ฐ˜๋Œ€๋กœ Adversarial ํ•˜๊ฒŒ ๋„ˆ๋ฌด ์„ฑ๋Šฅ์ด ๋‚ฎ๊ฒŒ ๋‚˜์˜จ๋‹ค๋ฉด, ์ด ๊ฒฝ์šฐ๋„ False ์ด๋‹ค.

\[\begin{aligned} FPR_{double} &= Pr(BA(D(I_0), w) > \tau \operatorname{or} BA(D(I_0), w) < 1- \tau) \\ &= Pr(m>n\tau) = \frac{n}{k= \lceil n\tau \rceil} \begin{pmatrix} n \\ k \end{pmatrix} \frac{1}{2^{n}} \end{aligned}\]
  • AI ์ƒ์„ฑ๋ฌผ์— ๋Œ€ํ•ด์„œ Watermark ์ ์šฉ -> Detection -> ๋žœ๋คํ•œ ์ •๋‹ต๊ณผ ์œ ์‚ฌ๋„ ๋น„๊ต.

True Positive Rate

The probability of a positive test result conditioned on truly being positive. Also called sensitivity

\[TNR = \frac{TN}{TN + FP}\]

True Negative Rate

The probability of a negative test result conditioned on truly being negative. Also called specificity.

\[TNR = \frac{TN}{TN + FP}\]